Network-Constrained Covariate Coefficient and Connection Sign Estimation
نویسندگان
چکیده
منابع مشابه
Covariate-adjusted varying coefficient models.
Covariate-adjusted regression was recently proposed for situations where both predictors and response in a regression model are not directly observed, but are observed after being contaminated by unknown functions of a common observable covariate. The method has been appealing because of its flexibility in targeting the regression coefficients under different forms of distortion. We extend this...
متن کاملSign-constrained least squares estimation for high-dimensional regression
Many regularization schemes for high-dimensional regression have been put forward. Most require the choice of a tuning parameter, using model selection criteria or cross-validation. We show that a simple sign-constrained least squares estimation is a very simple and effective regularization technique for a certain class of high-dimensional regression problems. The sign constraint has to be deri...
متن کاملConstrained Nonlinear Estimation of Road Friction Coefficient and Wheel Slip for Control of Anti-Lock Braking System
In designing the anti-lock braking system (ABS), some states and parameters of vehicle system such as road friction of coefficient and wheel slip should be estimated due to lack of cost effective and reliable sensors for direct measurement. Because of nonlinear characteristics of vehicle dynamics and tire forces, development of a nonlinear estimation algorithm is necessary. However, considerati...
متن کاملEstimation in covariate-adjusted regression
We propose a new estimation procedure for covariate adjusted nonlinear regression models for situations where both the predictors and response in a nonlinear regression model are not directly observed, however distorted versions of the predictors and response are observed. The distorted versions are assumed to be contaminated with a multiplicative factor that is determined by the value of an un...
متن کاملSupplement to “ Covariate Assisted Screening and Estimation ”
As mentioned before, the success of CASE relies on two noteworthy properties: the Sure Screening (SS) property and the Separable After Screening (SAS) property. In this section, we discuss the two properties in detail, and illustrate how these properties enable us to decompose the original regression problem to many small-size regression problems which can be fit separately. We then use these p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2020
ISSN: 1556-5068
DOI: 10.2139/ssrn.3530820